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An embedded boundary method for the wave equation

with discontinuous coefficients∗

Heinz-Otto Kreiss† N. Anders Petersson‡

September 28, 2005

Abstract

A second order accurate embedded boundary method for the two-dimensional
wave equation with discontinuous wave propagation speed is described. The wave
equation is discretized on a Cartesian grid with constant grid size and the interface
(across which the wave speed is discontinuous) is allowed to intersect the mesh in
an arbitrary fashion. By using ghost points on either side of the interface, previous
embedded boundary techniques for the Neumann and Dirichlet problems are gener-
alized to satisfy the jump conditions across the interface to second order accuracy.
The resulting discretization of the jump conditions has the desirable property that
each ghost point can be updated independently of all other ghost points, resulting
in a fully explicit time-integration method. Numerical examples are given where the
method is used to study electro-magnetic scattering of a plane wave by a dielectric
cylinder. The numerical solutions are evaluated against the analytical solution due
to Mie, and point-wise second order accuracy is confirmed.

1 Introduction

This paper describes a second order accurate Cartesian embedded boundary method for
the two-dimensional wave equation with discontinuous wave propagation speed. Moti-
vated by wave propagation problems from applications like seismology, acoustics, and
general relativity, where the underlying differential equations are systems of second-order
hyperbolic partial differential equations, we develop a numerical method that directly dis-
cretizes the wave equation in second order formulation. This approach extends previous
research [1, 2, 3] to the case of discontinuous coefficients.

∗This work was performed under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory, under contract W-7405-Eng-48.

†Träskö-Storö Institute of Mathematics, Stockholm, Sweden (hokreiss@nada.kth.se).
‡Center for Applied Scientific Computing, LLNL, Livermore, California (andersp@llnl.gov).
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For every second-order hyperbolic system, there is an equivalent but larger first-order
system. For example, two-dimensional acoustic wave propagation is governed by a scalar
second-order wave equation for the pressure, or by a system of three first-order hyperbolic
equations governing the two velocity components and the pressure. Most previous numer-
ical methods for this type of problems have focused on the first-order formulation [4, 5, 6].
For linear wave propagation, a staggered grid is often used to avoid complications with
stability of extra numerical boundary conditions [7] and spurious waves traveling in the
wrong direction [8]. However, Cartesian staggered grid discretizations are difficult to gen-
eralize to handle complex geometries, that is, boundaries that intersect the grid in an
arbitrary way.

The accuracy of a finite difference approximation of the wave equation with discon-
tinuous coefficients was analyzed by Brown [9]. For the one-dimensional case, he proved
that the amplitude error in reflected and transmitted waves is determined by the accu-
racy by which the jump conditions are discretized, while the phase error is determined by
the accuracy of the discretization in the interior of the domain. In the one-dimensional
case, Tikhonov and Samarskĭı’s [10] averaging formula was used to obtain a second order
accurate approximation without explicitly discretizing the jump conditions. Numerical
calculations indicated a significant benefit of combining the second order treatment of
the jump conditions with a fourth order method in the interior of the domain. Unfortu-
nately, it is not known how to generalize the averaging formula to the two-dimensional
case when the discontinuity is not aligned with the grid, and the combinations of a first
order treatment of the jump conditions with a second or fourth order formula away from
the interface gave less impressive results than in the one-dimensional case.

A fully second order immersed interface method for solving the two-dimensional acous-
tic wave equation with discontinuous coefficients was developed by Zhang and LeV-
eque [11]. Here, the problem was written as a hyperbolic system of three first order
equations and special difference formulas were developed near the interface, which take
the location of the interface and the jump conditions into account to achieve second order
accuracy. For each grid point next to the interface, a linear system with 54 equations for
54 unknowns had to be solved to find the values of the coefficients in the local difference
formula. For more complicated hyperbolic systems (such as the elastic wave equation),
even larger systems of equations must be solved to set up the coefficients.

In this paper, we consider the scalar second-order wave equation in a two-dimensional
domain Ω = ΩI ∪ ΩII , with a piecewise constant coefficient ρ(x) > 0,

ρ(x) =







ρI , x ∈ ΩI ,

ρII , x ∈ ΩII .
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Let u(x, t) and w(x, t) denote the solutions in the sub-domains ΩI and ΩII , satisfying

utt =
1

ρI
∆u+ F (x, t), x ∈ ΩI , t ≥ 0, (1)

wtt =
1

ρII
∆w + F (x, t), x ∈ ΩII , t ≥ 0. (2)

u(x, 0) = U0(x), ut(x, 0) = U1(x), x ∈ ΩI , (3)

w(x, 0) = W0(x), wt(x, 0) = W1(x), x ∈ ΩII . (4)

Here, F (x, t) is a forcing function. Let Γ be the smooth interface between ΩI and ΩII ,
across which the solutions are coupled by the jump conditions

u = w, x ∈ Γ, t ≥ 0, (5)

1

ρI

∂u

∂n
= − 1

ρII

∂w

∂n
, x ∈ Γ, t ≥ 0. (6)

Note that the normal derivatives are taken outwards from both ΩI and ΩII . Hence the
minus sign in the latter equation.

For the purpose of our discussion, we assume that ΩI is a bounded domain inside ΩII ,
and that ΩII has a rectangular outer boundary where Dirichlet or Neumann boundary
conditions are enforced. The interface between ΩI and ΩII can however have an arbitrary
smooth shape. As will be demonstrated below, the method can be generalized to sev-
eral subdomains. Non-rectangular outer boundaries can be handled using the embedded
boundary techniques in [2] and [3].

We discretize the two-dimensional wave equations on a Cartesian grid xi,j = (ih, jh)
in space, where h > 0 is the grid size, and let tn = nδt, n = 0, 1, 2, . . . denote the
time-discretization with step size δt > 0. We take un

i,j and wn
i,j to be the difference

approximations of u(xi, yj, tn) and w(xi, yj, tn), respectively. At all grid points interior to
ΩI , a second order accurate approximation of the Laplacian of u is given by

∆hu
n
i,j =:

1

h2
(uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4uni,j), xi,j ∈ ΩI . (7)

In order to form (7) at all grid points in ΩI , we also define un
i,j at the set of ghost points

GI :
GI = {(i, j), xi,j 6∈ ΩI , but at least one of xi±1,j ∈ ΩI or xi,j±1 ∈ ΩI}.

A corresponding formula is used to approximate the Laplacian of w at all interior grid
points of ΩII using a corresponding set of ghost points GII .

The solution at the ghost points are determined by the jump conditions (5) and (6).
We start by considering the ghost point ui,j , see Figure 1. We can derive second order
approximations for the value and normal derivative on the boundary using Lagrange

3
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Figure 1: The points used for discretizing the jump conditions.
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Figure 2: The solution along the normal to the interface is continuous, but its first
derivative is discontinuous.
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interpolation between ui,j, uI , and uII (see Figure 2),

BD
i,ju =: gD0 (ξΓ)ui,j + gDI (ξΓ)uI + gDII(ξΓ)uII = u(xΓ

i,j) +O(h2), (i, j) ∈ GI , (8)

BN
i,ju =: gN0 (ξΓ)ui,j + gNI (ξΓ)uI + gNII(ξΓ)uII =

∂u

∂n
(xΓ

i,j) +O(h2), (i, j) ∈ GI . (9)

The values uI and uII are obtained by Lagrange interpolation, in this case, along the
horizontal grid lines yj−1 and yj−2,

unI = r0u
n
i,j−1 + r1u

n
i−1,j−1 + r2u

n
i−2,j−1, (10)

unII = r3u
n
i,j−2 + r4u

n
i−1,j−2 + r5u

n
i−2,j−2. (11)

The coefficients gD and gN are given in Section 4.
To derive corresponding formulas for w along the same normal, we introduce the

virtual ghost point value wv, defined at the same location as uI , see Figure 1. Since wv is
outside ΩII and it is in general located in between grid points, this value is only used to
form the discrete jump conditions. Lagrange interpolation between wv, wi,j, and wII (see
Figure 2) gives for (i, j) ∈ GI ,

V D
i,jw =: gD0 (ξI − ξΓ)wv + gDI (ξI − ξΓ)wi,j + gDII(ξI − ξΓ)wII = w(xΓ

i,j) +O(h2), (12)

V N
i,jw =: gN0 (ξI − ξΓ)wv + gNI (ξI − ξΓ)wi,j + gNII(ξI − ξΓ)wII =

∂w

∂n
(xΓ

i,j) +O(h2). (13)

Note that there is a symmetry between the interpolation formulas for uI and wII that
simplifies the calculation of wII . If the normal going through xi,j intersects the horizontal
grid line y = yj−1 at x = xi − αh, the extension of the same normal will intersect the
grid line y = yj+1 at x = xi + αh. The Lagrange interpolation formula for wn

II therefore
becomes

wn
II = r0w

n
i,j+1 + r1w

n
i+1,j+1 + r2w

n
i+2,j+1.

Inserting the discrete approximations of the value and normal derivatives of u and w
into the jump conditions (5), (6), results in the discretized jump conditions:

BD
i,ju

n = V D
i,jw

n, (14)

1

ρI
BN

i,ju
n = − 1

ρII
V N
i,jw

n. (15)

Hence, we get a 2× 2 linear system for the unknowns (un
i,j, w

n
v ):





gD0 (ξΓ) −gD0 (ξI − ξΓ)

gN0 (ξΓ)/ρI gN0 (ξI − ξΓ)/ρII









uni,j

wn
v



 =





gDI (ξI − ξΓ)w
n
i,j + gDII(ξI − ξΓ)w

n
II − gDI (ξΓ)u

n
I − gDII(ξΓ)u

n
II

−(gNI (ξI − ξΓ)w
n
i,j + gNII(ξI − ξΓ)w

n
II)/ρII − (gNI (ξΓ)u

n
I + gNII(ξΓ)u

n
II)/ρI



 . (16)
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We solve this system for un
i,j and ignore the virtual ghost point value wn

v . A formula for
the w-ghost points can be derived in a similar way.

Note that this discretization of the jump conditions has the desirable property that
each ghost point can be updated independently of all other ghost points. Hence, there is
no coupling along the boundary.

The remainder of the paper is organized as follows. In Section 2, we prove that the
discretization of the jump conditions is stable in the one-dimensional case. A simplified
stability argument, based on a modified equation model, is presented in Section 3. The
solvability of the discrete jump conditions in the two-dimensional setting is demonstrated
in Section 4. Section 5 discusses time-integration and a generalization of the ATA dissi-
pation operator (see [2]), which is used to stabilize the scheme for long time integrations.
In Section 6, we use the method to study electro-magnetic scattering of a plane wave by
a dielectric cylinder, where there is a century old analytical solution due to Mie [12]. The
method is finally applied to a more complicated scattering problem consisting of many
subdomains.

2 Stability

We start by considering the one-dimensional wave equation with discontinuous wave prop-
agation speed,

utt = uxx, xmin ≤ x ≤ 0, t ≥ 0, (17)

wtt = c2wxx, 0 ≤ x ≤ xmax, t ≥ 0, (18)

u(x, 0) = U0(x), ut(x, 0) = U1(x), xmin ≤ x ≤ 0, (19)

w(x, 0) = W0(x), wt(x, 0) = W1(x), 0 ≤ x ≤ xmax, (20)

where c2 > 0, xmin < 0, xmax > 0, subject to the Dirichlet boundary conditions

u(xmin, t) = 0, w(xmax, t) = 0, t ≥ 0. (21)

At the interface, the jump conditions are

u(0, t) = w(0, t),

ux(0, t) = c2wx(0, t).

Using the notation in Figure 3, we discretize the problem in space on a uniform grid
xν = −αh + νh, with grid size h > 0, and denote a grid function by uν(t) = u(xν , t).
Divided difference operators are defined by Dx

+uν = (uν+1 − uν)/h and Dx
−uν = Dx

+uν−1.
To model the two-dimensional case, we shift the grid so the discontinuity in the wave speed
does not coincide with a grid point, i.e., 0 < α < 1. We want to focus the discussion on
the stability of the discretization of the jump conditions, and we take xmin and xmax to
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(1−α)hαh

u−2 u−1 u0 u1

x

x=0
w w w w0 1 2 3

Figure 3: Notation for the one-dimensional problem.

coincide with grid points, i.e., xmin = x−N and xmax = xN . The semi-discrete problem
becomes

d2uν
dt2

= Dx
+D

x
−uν , ν = 0,−1,−2, . . . ,−N + 1, (22)

d2wν

dt2
= c2Dx

+D
x
−wν , ν = 1, 2, 3, . . . , N − 1, (23)

subject to Dirichlet boundary conditions

u−N = 0, wN = 0, t ≥ 0. (24)

We discretize the jump conditions to second order accuracy by

(1− α)u0 + αu1 = (1− α)w0 + αw1, (25)

Dx
+u0 + h

(

α− 1

2

)

Dx
+D

x
−u0 = c2

(

Dx
+w0 + h

(

α− 1

2

)

Dx
+D

x
−w1

)

. (26)

By using (22) and (23), we can write (25), (26) as

αu1 + (α− 1)w0 = (α− 1)u0 + αw1,

u1 + c2w0 = u0 + c2w1 + h2
(

α− 1

2

)(

d2w1

dt2
− d2u0

dt2

)

.

Solving for w0 and u1 yields

w0 =
1

1− α(1− c2)

(

u0 − α(1− c2)w1 + h2α

(

α− 1

2

)(

d2w1

dt2
− d2u0

dt2

))

, (27)

u1 =
1

1− α(1− c2)

(

c2w1 + (1− α)(1− c2)u0+

h2(1− α)

(

α− 1

2

)(

d2w1

dt2
− d2u0

dt2

))

. (28)

By using (27)-(28) we can eliminate w0, u1 from (22)-(23), and obtain

b11
d2u0
dt2

+ b12
d2w1

dt2
=

1

h2
(a10u−1 + a11u0 + a12w1) ,

b21
d2u0
dt2

+ b22
d2w1

dt2
=

1

h2
(a21u0 + a22w1 + a23w2) .
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Here,

b11 = 1− α(1− c2) +

(

α− 1

2

)

(1− α), b12 = −
(

α− 1

2

)

(1− α), (29)

b21 = α

(

α− 1

2

)

, b22 =
1

c2

(

1− α(1− c2)− c2α

(

α− 1

2

))

. (30)

and

a10 = 1− α(1− c2), a11 = −2 + (1 + α)(1− c2), a12 = c2, (31)

a21 = 1, a22 = −2 + α(1− c2), a23 = 1− α(1− c2). (32)

We can write the semi-discrete problem in matrix form,









































1 0
. . .

0 1 0

0 b11 b12

b21 b22 0

0 1/c2 0
. . .

0 1/c2









































d2

dt2









































u−N+1
...

u−1

u0

w1

w2

...

wN−1









































=

1

h2









































−2 1
. . .

1 −2 1

a10 a11 a12

a21 a22 a23

1 −2 1
. . .

1 −2

















































































u−N+1
...

u−1

u0

w1

w2

...

wN−1









































which we write as

Bwtt =
1

h2
Aw. (33)
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By (31), (32), the matrix A is negative diagonally dominant and the off-diagonal elements
are positive. Therefore it can be symmetrized by a diagonal scaling D > 0,

w̃ =



































. . .

d−2

d−1 0

d0

0 d1

d2
. . .





































































...

u−2

u−1

u0

w1

w2

...



































=: Dw, (34)

and (33) becomes

B̃w̃tt =
1

h2
Ãw̃, B̃ = DBD−1, Ã = DAD−1 = Ã∗ < 0. (35)

Without restriction we can assume that d0 = 1. Then d1 is determined by the condition
that





1 0

0 d1









a11 a12

a21 a22









1 0

0 d−11



 =





a11 d−11 a12

d1a21 a22





is symmetric. By (31), (32)): d1 =
√

a12/a21 = c. The corresponding 2× 2 submatrix of
B becomes

B̃1 =





1 0

0 d1









b11 b12

b21 b22









1 0

0 d−11



 =





b11 b12/c

cb21 b22



 .

We want to show that
1

2
(B̃ + B̃∗) > 0, B̃ = DBD−1. (36)

We need to prove this only for B̃1, since the remaining part of B̃ is identical to B, i.e.,
diagonal with positive elements. By (29), (30),

b11 = (1− α)

(

1

2
+ α

)

+ αc2 > 0, (37)

b22 =
1

c2

(

1− α + αc2
(

3

2
− α

))

> 0. (38)
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The characteristic equation, det( 1
2
(B̃1 + B̃∗1)− µI) = 0, is

µ2 − µ(b11 + b22) + b11b22 −
1

4

(

b12
c

+ cb21

)2

= 0,

with discriminant

∆ = (b11 + b22)
2 − 4

(

b11b22 −
1

4

(

b12
c

+ cb21

)2
)

= (b11 − b22)
2 +

(

b12
c

+ cb21

)2

> 0.

The roots are

µ1,2 =
1

2

(

b11 + b22 ±
√
∆
)

.

Since b11 + b22 > 0 and ∆ > 0, both roots are real and positive if (b11 + b22)
2 > ∆. We

have

1

4

(

(b11 + b22)
2 −∆

)

= b11b22 −
1

4

(

b12
c

+ cb21

)2

=
1

c2

(

(1− α)

(

1

2
+ α

)

+ αc2
)(

1− α + αc2
(

3

2
− α

))

−
(

α− 1
2

)2

4
(1− α− αc2)2

=
1

c2

(

(1− α)2(
1

2
+ α)− (α− 1

2
)2

4
(1− α)2

)

> 0.

Thus 1
2
(B̃ + B̃∗) is positive definite.

If α = 1
2
, then, by (29)-(30), b12 = b21 = 0 and B̃ = B̃∗ > 0. Since Ã = Ã∗ < 0, there

is an energy estimate and the method is stable.
If α 6= 1

2
, then we make an eigenvector expansion. w̃ = eλtw̃0 is a solution of (35) if

λ, w̃0 are solutions of the eigenvalue problem

(

λ2B̃ − 1

h2
Ã
)

w̃0 = 0. (39)

If we can prove that the eigenvalues λ2 are real, distinct, and negative, then there are no
growing modes and the approximation is stable.

If λ2 is real, then also w̃0 is real and the symmetry of Ã give us

λ2〈w̃0, B̃w̃0〉 =
λ2

2
〈w̃0, (B̃ + B̃∗)w̃0〉 =

1

h2
〈w̃0, Ãw̃0〉,

where 〈u,v〉 denotes the usual L2 inner product. Since Ã < 0 and B̃ + B̃∗ > 0, it follows
that λ2 < 0.

We need

10



Lemma 1 Consider a tridiagonal system of equations

















d1 e1 0 · · · · · · · · · 0

l2 d2 e2 0 · · · · · · 0

0 l3 d3 e3 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . 0 ln dn



























z1
...

zn











= 0, (40)

and assume that θ = 0 is an eigenvalue. If all ej 6= 0 or all lj 6= 0, then θ is a simple
eigenvalue (i.e., the invariant subspace has dimension 1).

Proof. Assume that all ej 6= 0 and θ is not a simple eigenvalue. Since the invariant sub-
space corresponding to θ has dimension larger than one, we can construct an eigenvector
with z1 = 0. But then z2 = z3 = . . . = zn = 0 which is a contradiction. Correspondingly,
if all lj 6= 0, then there is a solution with zn = 0 which again implies that zn−1 = zn−2 =
. . . = z1 = 0. This proves the lemma.

We shall now prove that the eigenvalues λ2 of (39) are simple for all 0 < α < 1. λ2 is an
eigenvalue of (39) if zero is an eigenvalue of the tri-diagonal matrix Q = h2λ2B̃ − Ã. The
conditions of Lemma 1 are violated if there is some value of α where at least one element
on the sub-diagonal of Q is zero and one element on the super-diagonal of Q is zero. The
only off-diagonal elements of B̃ are b̃12 and b̃21, D > 0, and a10 = a23 = (1− α) + αc2 > 0
for all 0 ≤ α ≤ 1. Hence, Lemma 1 can only be violated if

h2λ2b̃12 − ã12 = 0, and h2λ2b̃21 − ã21 = 0. (41)

By (29), (30), (31) and (32) we can write (41) as

−h2λ2(α− 1

2
)(1− α)− c2 = 0, h2λ2α(α− 1

2
)− 1 = 0,

i.e.,
α− 1

α
= c2,

which is a contradiction because c2 > 0, but the left hand side is negative for 0 < α < 1.
Thus the eigenvalues λ2 of (39) are simple. They are also real because they are solutions of
the characteristic equation and smooth functions of α. For α = 1

2
they are real. Therefore

they are real for all values of α because they can only become complex at some value
α = α0 if there is an eigenvalue which is not simple.

This completes the proof of

Theorem 1 The eigenvalues λ2 of (39) are real, distinct, and negative. Therefore the
semi-discrete problem (22), (23) subject to the boundary conditions (24) and the jump
conditions (25), (26) is stable.
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3 The modified equation

Instead of the complete proof of the last section (which is quite complicated), we shall
now use modified equations and show stability for the low and intermediate frequencies.
This analysis does not provide any information about the highest frequencies. As we shall
see in Section 6, numerical calculations show that our “ATA-dissipation” takes care of any
instabilities caused by these frequencies. We discuss the technique here because in the
multi-dimensional case, the use of modified equations is the only way to obtain stability
information. Such an analysis can be found in [2]. Since in [2] we neglected the truncation
error in the normal direction, it is important that the restriction of the approximation to
1D is completely stable.

We introduce the dependent variable

v(x, t) = u(−x, t),

assume xmin →∞, xmax →∞, and write (17), (18) as a half-plane problem for the system




v

w





tt

=





1 0

0 c2









v

w





xx

, 0 ≤ x <∞, t ≥ 0, (42)

with the modified jump conditions

v(0, t) + h2βvxx(0, t) = w(0, t) + h2βwxx(0, t), (43)

vx(0, t) + h2γvxxx(0, t) = −c2
(

wx(0, t) + h2γwxxx(0, t)
)

. (44)

We obtain (43) and (44) from (25) and (26) by adding the leading truncation error term.
A simple but tedious calculation shows that

β =
(1− α)α

2
, γ =

−2 + 6α− 3α2

6
.

We use mode analysis to discuss stability. The general solutions of type




v(x, t)

w(x, t)



 = est





ṽ(x, s)

w̃(x, s)



 , Re(s) ≥ 0,

where (ṽ(x, s), w̃(x, s)) are bounded, are given by

v(x, t) = este−sxv0, w(x, t) = este−(s/c)xw0. (45)

Introducing (45) into the boundary conditions (43), (44), gives us

(1 + h2βs2)v0 − (1 + h2βs2)w0 = 0,

(1 + h2γs2)v0 + c2(1 + h2γs2)w0 = 0.

12



Thus, non-trivial solutions exist if and only if

−(1 + h2βs2)(1 + h2γs2) = 0.

Hence, instabilities can only be present for s = O(1/h), i.e., for high frequencies. (How-
ever, the proof in the previous section shows that this cannot happen).

4 Solvability of the 2-D discrete jump conditions

Let the 2× 2 matrix on the left hand side of (16) be P . The linear system has a unique
solution if detP 6= 0. We have

detP = gD0 (ξΓ)g
N
0 (ξI − ξΓ)/ρII + gD0 (ξI − ξΓ)g

N
0 (ξΓ)/ρI .

The coefficients in the Dirichlet formula (8) are

gD0 (ξ) =
(ξI − ξ)(2ξI − ξ)

2ξ2I
+ δ, gDI (ξ) =

ξ(2ξI − ξ)

ξ2I
− 2δ, gDII(ξ) =

ξ(ξ − ξI)

2ξ2I
+ δ,

where δ ≈ 0.25 is a constant that removes the small-cell time step restriction while
preserving the second order accuracy, see [3]. The coefficients in the Neumann formula
(9) are, (see [2])

gN0 (ξ) =
3ξI − 2ξ

2ξ2I
, gNI (ξ) =

2ξI − 2ξ

ξ2I
, gNII(ξ) =

ξI − 2ξ

2ξ2I
.

Since 0 ≤ ξΓ ≤ ξI and δ > 0,

0 < δ ≤ gD0 ≤ 1 + δ, 0 <
1

2ξI
≤ gN0 ≤

3

2ξI
.

Hence
δ

2ξI

(

1

ρI
+

1

ρII

)

≤ detP ≤ 3(1 + δ)

2ξI

(

1

ρI
+

1

ρII

)

.

For all possible directions of the normal, h ≤ ξI ≤
√
2h, and we conclude that

detP ≥ C > 0, C =
δ

2
√
2h

(

1

ρI
+

1

ρII

)

.

The fact that the lower bound of detP is proportional to δ shows that the δ-term is
essential for the solvability of the discrete jump conditions for general locations of the
interface relative to the grid. The δ-term was originally designed for Dirichlet boundary
conditions to remove the small-cell time-step restriction, cf. [3], and it also serves that
purpose here.
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5 Time integration and ATA dissipation

The discretized jump conditions (16) can in principle be used to eliminate all ghost points
from the discrete approximation of the Laplacians of u and w (7). Since the jump condi-
tions couple the solutions on both sides of the interface, the matrix form of the discrete
Laplacian becomes:

∆hu(XI , tn) = A11u
n + A12w

n,

∆hw(XII , tn) = A21u
n + A22w

n,
A =





A11 A12

A21 A22



 .

Here, XI and XII are vectors of all grid point coordinates inside ΩI and ΩII , respectively,
and u and w are the discrete solutions at those grid points. If all eigenvalues of A are
distinct, real, and negative, one can show that the scheme





ρI(u
n+1 − 2un + un−1)/δ2t

ρII(w
n+1 − 2wn + wn−1)/δ2t



 = A





un

wn



+ F (tn), (46)

is stable for sufficiently small time steps δt [1]. However, the embedded boundary approx-
imation of the jump conditions break the symmetry of the matrix A so it is not possible
to guarentee this property. In fact, numerical examples (see Section 6) indicate that the
above scheme suffers from a mild instability.

In the previous embedded boundary methods for the wave equation subject to Neu-
mann [2] and Dirichlet [3] boundary conditions, we damped the instability by adding a
small fourth order term of the type h3ATA(ut,wt)

T to the right hand side of (46). While
this technique turned out to work very well in practice for the Neumann and Dirich-
let problems, it is not directly amendable to the current problem because the matrix A
couples the solutions across the interface. Consequentially, it becomes complicated to
evaluate AT on a solution vector without explicitly forming the matrix A.

It is not difficult to modify the previous dissipation technique to work with the jump
conditions. We first describe the idea for the continuous problem. For the wave equation
(1-2) with jump conditions (5-6), we can evaluate the normal derivative of the solutions
on either side of the interface as functions of time,

∂u

∂n
(x, t) =: fI(x, t), x ∈ Γ, t ≥ 0, (47)

∂w

∂n
(x, t) =: fII(x, t), x ∈ Γ, t ≥ 0. (48)

Hence, once the continuous problem with jump conditions has been solved, we can in
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principle re-compute the same solution by solving two uncoupled Neumann problems:

ρIutt = ∆u+ F (x, t), x ∈ ΩI , t ≥ 0,

∂u

∂n
(x, t) = fI(x, t), x ∈ Γ, t ≥ 0, (49)

u(x, 0) = U0(x), ut(x, 0) = U1(x), x ∈ ΩI ,

and

ρIIwtt = ∆w + F (x, t), x ∈ ΩII , t ≥ 0,

∂w

∂n
(x, t) = fII(x, t), x ∈ Γ, t ≥ 0, (50)

w(x, 0) = W0(x), wt(x, 0) = W1(x), x ∈ ΩII .

Our basic idea is to use the stabilized embedded boundary scheme for the Neumann
problem described in [2], where the forcing functions fI and fII are computed on the fly
during the time evolution.

For conciseness, we only describe the details for the Neumann problem (49), which is
discretized on the same Cartesian grid as above, leading to the same set of ghost points
GI where the discrete boundary conditions are applied,

BN
i,ju

n = fI(x
Γ
i,j , tn), (i, j) ∈ GI . (51)

The formula (7) for discretizing the Laplacian of u is the same as before, but since the
Neumann problem for u is decoupled from w, we now get the matrix representation

∆hu(XI , tn) = AIu
n + bn

I , (52)

after all ghost points have been eliminated from (7). The vector bI contains the discrete
boundary forcing function corresponding to the forcing function fI(x

Γ, t) and is only
non-zero at grid points just inside the boundary, see [2] for details.

The stabilized scheme for the Neumann problem is

ρI(u
n+1 − 2un + un−1)/δ2t =

AIu
n + bn + F (tn)− ε

h3

δt
AT

I

(

AIu
n + bn − AIu

n−1 − bn−1
)

, (53)

where ε > 0 is a small constant. Numerical experiments indicate that ε = O(10−3) is
sufficient to allow for very long time integrations (106 time steps, or more). The scheme
(53) can be recast into an equivalent form that makes it easier to generalize to handle the
jump conditions. Let us define an extended solution vector ū, that includes the solution
at all interior points as well as the ghost points. Given ū, all values are defined to evaluate
the discrete Laplacian ∆hui,j (7), at all points xi,j ∈ ΩI . We write the discrete Laplacian
at all these points as ∆hū and arrive at the equivalent method:

15



1. Given un, define ūn by assigning all ghostpoints to satisfy the discretized Neumann
boundary condition (51).

2. Update all interior points xi,j ∈ ΩI by

ρI(u
n+1 − 2un + un−1)/δ2t = ∆hū

n + F (tn)− ε
h3

δt
AT

I

(

∆hū
n −∆hū

n−1
)

. (54)

Using this formulation shows that the matrix AI is only needed to evaluate the dissipation
term, and only for the matrix-vector product AT

I y, where y = ∆hū
n−∆hū

n−1. Note that
the boundary forcing fI(x

Γ, t) only influences the ghost point values and has no bearing
on AT

I .
To satisfy the discrete jump conditions (14)-(15), it appears that we must first calculate

a corresponding value of fI to use in (51). Given un, this can be achieved by first
calculating the values at all ghost points GI by solving the 2× 2 linear system (16). We
can then use the embedded boundary formula (51) to evaluate fI . However, it is a trivial
exercise to see that enforcing (51) with this fI results in the same ghost point values as
we started with. Hence, it is not necessary to calculate fI , and we can simply replace
the inhomogeneous Neumann condition by the discrete jump conditions (16). The same
principle applies to the Neumann problem in ΩII and we arrive at the damped scheme
for the problem with jump conditions:

1. Given un and wn, define ūn by assigning all ghostpoints ui,j to satisfy the discrete
jump conditions along normals going through (i, j) ∈ GI ,

BD
i,ju

n = V D
i,jw

n,

1

ρI
BN

i,ju
n = − 1

ρII
V N
i,jw

n,

2. Given un and wn, define w̄n by assigning all ghostpoints wi,j to satisfy the discrete
jump conditions along normals going through (i, j) ∈ GII ,

BD
i,jw

n = V D
i,ju

n,

1

ρII
BN

i,jw
n = − 1

ρI
V N
i,j u

n,

3. Update all interior points xi,j ∈ ΩI by

ρI(u
n+1 − 2un + un−1)/δ2t = ∆hū

n + F (tn)− ε
h3

δt
AT

I

(

∆hū
n −∆hū

n−1
)

.

4. Update all interior points xi,j ∈ ΩII by

ρII(w
n+1 − 2wn + wn−1)/δ2t = ∆hw̄

n + F (tn)− ε
h3

δt
AT

II

(

∆hw̄
n −∆hw̄

n−1
)

.
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Here, AII denotes the matrix representation of the discrete Laplacian subject to discrete
Neumann conditions in ΩII , and w̄n is the extended solution vector holding the solution
at all interior grid points of ΩII as well as at the ghost points GII . Note that the matrices
AI and AII do not need to be formed explicitly, cf. [2].

The wave equation subject to jump condition is equivalent to the two uncoupled wave
equations subject to Neumann boundary conditions (49)-(50), and the theory in [2] shows
that the h3ATAut dissipation term inflicts an error which is O(h2) for these problems.
Hence, we conclude that the dissipation term also inflicts an O(h2) error for the wave
equation with jump conditions.

6 Numerical examples

To test the accuracy of the numerical scheme, we begin by considering electromagnetic
scattering of a plane incident wave by a dielectric circular cylinder of radius R. In this
section, we follow the notation of electromagnetics and let κe denote the relative permit-
tivity of the dielectric material and assume unit relative permissivity. By assuming TEz

polarization and scaling time to obtain unit speed of light in vacuum, we arrive at the
following problem for the z-component of the magnetic field,

∂2H(z)

∂t2
= ∆H(z), R2 < x2 + y2 <∞, (55)

∂2H(z)

∂t2
=

1

κe

∆H(z), x2 + y2 < R2, (56)

subject to the jump conditions

[

H(z)
]

= 0,

[

1

κe

∂H(z)

∂n

]

= 0, x2 + y2 = R2.

Here, ∂/∂n denotes the normal derivative on the boundary of the dielectric cylinder and
κe = 1 outside the cylinder. There is an analytical solution of this problem due to Mie
(see, for example, [13] p. 667). Let the incident wave have angular frequency ω and wave
number k,

H
(z)
I (x, y, t) = ei(kx−ωt).
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N h uerr uerr, A
TA werr werr, A

TA

201 1.5× 10−2 4.50× 10−2 4.47× 10−2 2.07× 10−2 2.09× 10−2

401 7.5× 10−3 1.12× 10−3 1.11× 10−2 5.44× 10−3 5.49× 10−3

801 3.75× 10−3 2.81× 10−3 2.80× 10−3 1.30× 10−3 1.31× 10−3

Table 1: Max error at time T = 10.0 for the case κe = 2 inside the dielectric cylinder
(uerr) and outside of it (werr), with ATA dissipation (ε = 10−3) and without dissipation.

In polar coordinates (ρ, θ), the incident, scattered and transmitted fields are

H
(z)
I = eiωt

∞
∑

n=−∞

i−nJn(kρ)e
inθ, ρ > R (57)

H
(z)
S = eiωt

∞
∑

n=−∞

i−nanH
(2)
n (kρ)einθ, ρ > R, (58)

H
(z)
D = eiωt

∞
∑

n=−∞

i−nbnJn(mkρ)einθ, ρ < R, (59)

wherem =
√
κe, Jn is the Bessel function of the first kind of order n, andH (2) is the Hankel

function of the second kind of order n (corresponding to waves propagating outwards).
The coefficients an and bn are given in [13] p. 667.

The scattering problem was solved numerically for the case R = 1, κe = 2, ω = k = 2π.
The computational domain was the square −1.5 ≤ x ≤ 1.5, −1.5 ≤ y ≤ 1.5, and the exact
solution was imposed as a Dirichlet boundary condition on the outer boundary. The
exact solution was also imposed as initial condition. The error in the numerical solution
measured in max norm over all internal grid points was evaluated at times T = 10.0 and
T = 200.0, see Tables 1 and 2, respectively. Note that the error is second order accurate
at both times and of the same order of magnitude for the same grid sizes. Studying the
error as function of time, Figure 4, reveals that the ATA dissipation is only necessary for
long-time computations. Furthermore, there is no noticable growth of the error after long
times when the dissipation is used, indicating that the damping is very weak.

As a second test, we consider the same geometry as above, but reduce the wave speed
inside the cylinder by setting κe = 10. Hence the wave length inside the cylinder will be
a factor

√
10 smaller than outside of it. For this reason, a smaller grid size is needed to

resolve the solution and the grid with N = 201 is no longer adequate. The errors in the
solution at times T = 10 and T = 200 are given in Tables 3 and 4, respectively. Even
though the errors are larger in this case, they are still second order accurate at both times
and of the same order of magnitude for the same grid sizes. The solution at time T = 10
is shown in Figure 5.
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N h time steps uerr, A
TA werr, A

TA

201 1.5× 10−2 26, 666 3.38× 10−2 3.57× 10−2

401 7.5× 10−3 53, 333 8.42× 10−3 7.82× 10−3

801 3.75× 10−3 106, 666 2.31× 10−3 1.97× 10−3

Table 2: Max error at time T = 200.0 for the case κe = 2 inside the dielectric cylinder
(uerr) and outside of it (werr). The coefficient in the ATA dissipation was ε = 10−3.

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Time

Max error

N=201
N=201, no ATA
N=401
N=401, no ATA
N=801
N=801, no ATA

Figure 4: The max error inside the dielectric cylinder (uerr) as function of time for the
case κe = 2, for different grid sizes, with and without ATA dissipation.

N h uerr uerr, A
TA werr werr, A

TA

401 7.5× 10−3 2.17× 10−1 2.16× 10−1 6.52× 10−2 6.48× 10−2

801 3.75× 10−3 5.48× 10−2 5.47× 10−2 1.62× 10−2 1.61× 10−2

Table 3: Max error at time T = 10.0 for the case κe = 10 inside the dielectric cylinder
(uerr) and outside of it (werr), with ATA dissipation (ε = 10−3) and without dissipation.
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N h time steps uerr, A
TA werr, A

TA

401 7.5× 10−3 53, 333 2.03× 10−1 7.16× 10−2

801 3.75× 10−3 106, 666 5.81× 10−2 1.75× 10−2

Table 4: Max error at time T = 200.0 for the case κe = 10 inside the dielectric cylinder
(uerr) and outside of it (werr). The coefficient in the ATA dissipation was ε = 10−3.

−1.5 −1 −0.5 0 0.5 1 1.5
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0

1

2

3

Figure 5: The Mie scattering solution at time T = 10 with κe = 10. Note the focusing of
the wave inside the cylinder.
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Figure 6: An incoming planar wave scattered by several bubbles with both larger and
smaller wave speed compared to the ambient media.

To illustrate that the method generalizes to many subdomains, we consider the scat-
tering of a plane incoming wave on a media with different wave speeds inside each bubble,
see Figure 6. This calculation was started from homogeneous initial data, and driven on
the left boundary by the data u(−2, y, t) = sin(8πt). The remaining outer boundaries had
homogeneous Neumann conditions. The solution is shown at time T = 5. The ambient
media has unit wave speed, so this time corresponds closely to the first arrival of the
solution at the right boundary. Note that the speed inside the top bubble (which breaks
the otherwise symmetrical configuration) equals the unit speed in the ambient media, but
the jump conditions are enforced across its interface. Never the less, the contour lines of
the numerical solution display a high degree of symmetry about the y = 0 axis, indicating
that the truncation errors in the jump conditions are very small.

7 Conclusions

We have developed a second order accurate embedded boundary method for the two-
dimensional wave equation with discontinuous coefficients. The current method uses the
same grid size throughout the computational domain, but as the jump in wave speed
across the interface gets larger, it becomes obvious that this approach either over-resolves
the solution on one side of the interface, or under-resolves it on the other side. It would
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therefore be desirable to extend the method to handle different mesh sizes on different
sides of the interface; some initial steps have been taken in this direction. We also expect
to generalize the method to handle the more complicated jump conditions associated with
the elastic wave equation with discontinuous coefficients.
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